

RESILIENCY FOR THE TULALIP TRIBES - UTILITY CONSIDERATIONS

Objective

- The Tulalip Tribes have received grants to add up to 1 MWDC of solar power and 8 MWh of stored energy in a battery energy storage system (BESS)
- This project examines the potential wholesale market value of independently owned distributed energy resources (DERs) to inform potential partnership strategies with the distribution utility SnoPUD.

Requirements

- **1. Power Flow Analysis:** Model the local distribution grid and confirm that injecting power from the microgrid will be safe and reliable—even under worst-case conditions
- 2. Cost Savings Analysis: Compare different battery sizes, explore Bonneville Power Administration (BPA) power pricing scenarios, and calculate a 10-year net present value (NPV)
- 3. BESS Research and Recommendations: Recommend different battery technologies (including size, capacity, and vendor options) that work for both everyday use and emergency backup

Power Flow Analysis

Circuit Context & Model Inputs:

• **QLC feeder** (north loop — Quil-Ceda sub **QLC 12-317B**, serving Gathering-Hall / Lushootseed) and **TUL feeder** (south loop — Tulalip sub **TUL 12-507**, serving Admin Campus / Mission Beach) form the twin circuits used in all Synergi studies.

Scenario Set-Up:

• We combine SnoPUD winter-peak and summer-midday load taps with the Synergi **DER library** (PV, BESS, diesel) to create worst-case studies; the two representative scenarios in the table illustrate this approach.

ID	Season	Load Condition	Expected PV	BESS Strategy*	Generator Status	Why
W-1	Winter	Peak evening demand	None	Discharge to support peak load	OFF	Worst drop a loadir
S-1	Summer	Quiet midday, low load	Very high	Charge with surplus PV to hold voltage	OFF	Avoid and so curtai

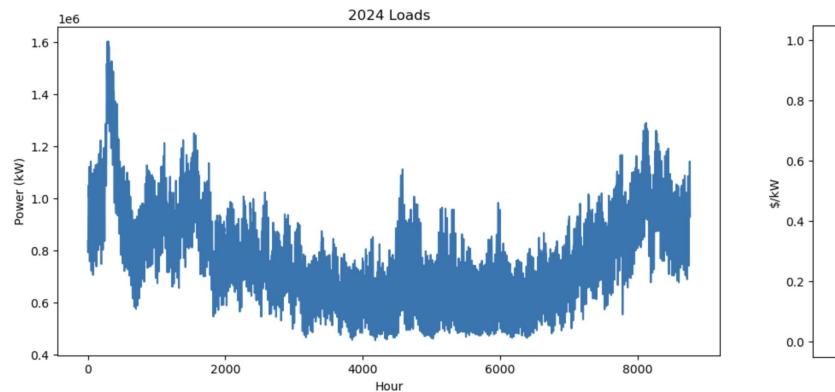
Simulating These Scenarios in Synergi:

- Placing DERs at realistic downstream nodes
- Configure Solar as fixed-output, BESS with Volt/VAR control
- Configure load profiles to match seasonal conditions (Winter Peak, Summer Peak).
- Tracking key metrics: Voltage (Min/Max), Current, Reactive Power, and Imbalance.

ELECTRICAL & COMPUTER ENGINEERING

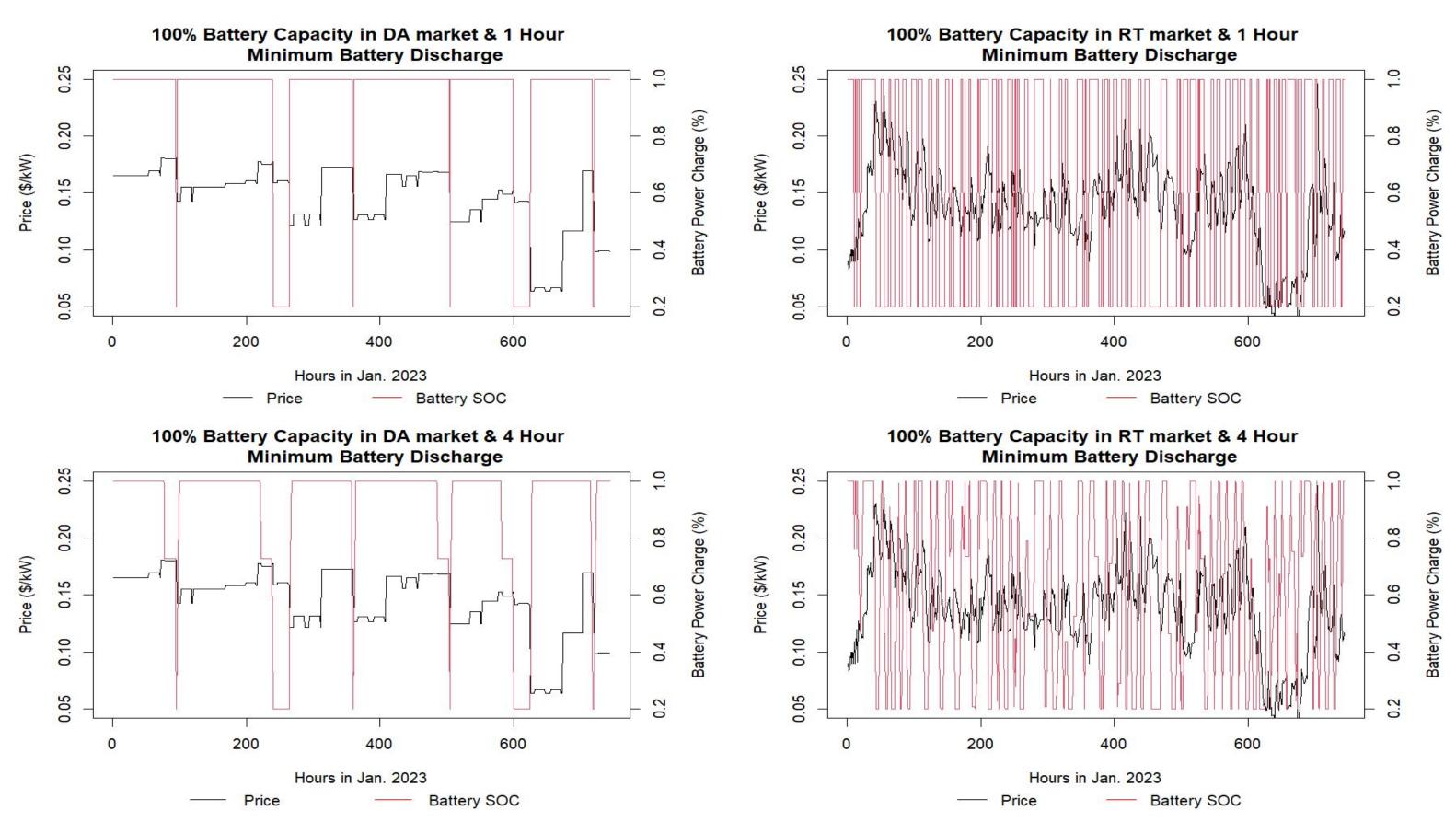
UNIVERSITY of WASHINGTON

^v this snapshot matters st-case voltage & thermal d over-voltage solar ailment

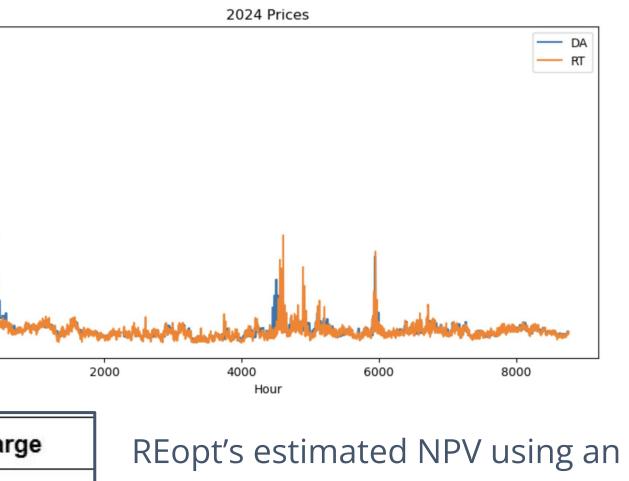

Cost Savings Analysis: Role of Market Pricing on Battery Dispatch

Background

- 3 tier SnoPUD power purchasing procedure: BPA Block & Slice, day-ahead (DA) market, and the real-time (RT) market.
- The Simulated Pricing Models we used to accurately reflect savings from BESS forecasting and use were 100% DA, 100% RT, and Hybrid: 75% BESS Capacity DA, 25% BESS Capacity RT.


Cost Savings Analysis using REopt

- REopt: scheduling and optimization software used to assist in planning and designing distributed energy systems.
- Find life cycle cost savings of the project for the course of 10 years • Produce graphs of BESS dispatch: charge/discharge of battery based on rates and loads
- Graphs below display the loads (left) and DA/RT prices (right) over the course of 2024.


Scenario	1 hour discharge	2 hour discharge	4 hour dischar
100% DA	\$327,674	\$327,687	\$313,772
100% RT	\$1,114,667	\$1,023,203	\$875,871
75% DA/25% RT Hybrid	\$524,423	\$501,566	\$454,297
Recommended battery power	6.75 MW	4.0 MW	2.0 MW

• Graphs below display optimal battery dispatch over the SnoPUD provided rates in January 2023 for a minimum battery discharge of 1 hour (top 2 graphs) and 4 hours (bottom 2 graphs)

ADVISERS: Daniel Schwartz, Bosong Li

SPONSOR: Snohomish PUD, Alex Chorey, Steve Hinton

8 MW battery over a 10 year lifetime, based on 2023's DA and RT market data and electrical load, while varying battery usage and applications

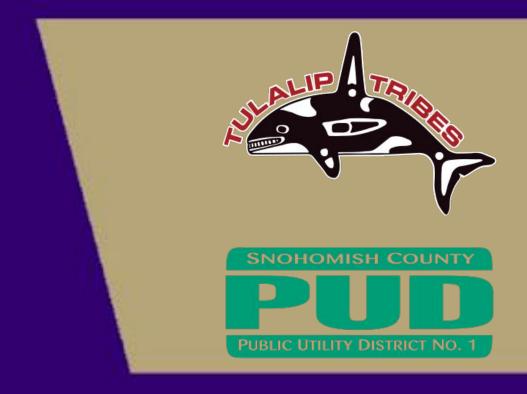
BESS: Economics & Parameter Analysis

Research and Literature Survey: and economical considerations.

Identified Use Cases of BESS: 1. Energy Arbitrage/Shifting

- 2. Resiliency

3. Load Leveling and Congestion Relief **Analyzed Different Battery Durations:**


	2-hour BESS (\$/kWh)	4-hour BESS (\$/kWh)	8-hour BESS (\$ / kWh)
Costs:	Cheapest	Compensation in markets	Most Expensive
O&M:	CAPEX: 1,325.924 O&M: 29.48	CAPEX: 2159.143 O&M: 49.595	CAPEX: 3,827.98 O&M: 89.826
Rated Power:	4 MW	2 MW	1 MW
Power Restraints:	Can provide up to 4 MW in an hour, for approximately 2 hours with little drop	Provides a middle range in terms of length with one 2 MW provided an hour, not intended for long term durations	outages, however
Utility Use:	Optimal for Arbitrage and High Cost Savings, but requires accurate forecasting	Discharge during a longer time window and cover peak hours Multiple cycles a day	Fewer cycles a day

Compared various BESS Materials:

- with a lower cost due to high levels of manufacturing. **Identified Concerns:**

Future Work and Acknowledgments

- Analyze Power Flow with N-1 Contingencies
- Run Parametric Studies for Op Solar Dispatch

• Consulted with Nathan Washburn from SoundGrid Partners on BESS parameters

• Lithium Iron Phosphate (LFP): utilizes an Iron Phosphate cathode, increasing energy density from standard industry values of Lithium systems.

Nickel Manganese Cobalt (NMC): utilizes a high energy density for a shorter

period of time, with LFP providing a lower power for a longer time.

• LFP batteries are considered safer due to a limit of heavy metal contamination,

• Cell Degradation over a 10 yr depreciation period.

• Instrumentation and Controls - low level metering can fault system.

ptimal	
pennar	

Acknowledgements: Thanks to our instructors, our sponsors (Alex and Steve), Nathan Washburn, and Laura Reinitz for their expertise and guidance,